The generator matrix 1 0 1 1 1 X^2+X 1 1 X^2 1 1 X 0 1 1 1 1 1 X^2 1 X^2+X 1 X X^2 1 1 1 X^2+X 0 1 X^2 1 1 0 X 0 1 1 0 X^2+X+1 1 X X^2+X+1 1 1 X^2+X 1 1 X^2+1 X^2+X+1 X^2 X^2+X 0 1 0 1 X^2+1 1 1 0 1 1 1 X^2 X^2+X X X^2+1 1 1 0 0 0 X 0 X^2+X 0 0 X^2 X^2 0 0 X^2 0 X^2 X X X^2+X X^2+X 0 X^2+X X^2+X 0 X^2+X X^2+X 0 X^2 X^2+X 0 X X^2+X X^2 X X X^2 X^2+X 0 0 0 X 0 0 X^2+X X^2+X X^2+X X X^2 X^2+X X^2 X^2 X 0 X X X X X^2+X X^2 X 0 X X X^2+X 0 0 0 X^2+X X^2 0 X^2 X^2+X 0 0 0 0 X^2 0 X^2 0 0 X^2 0 X^2 X^2 X^2 X^2 0 X^2 0 0 X^2 0 X^2 X^2 0 0 0 X^2 X^2 X^2 0 0 0 X^2 X^2 X^2 0 0 0 0 0 X^2 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 X^2 X^2 X^2 0 0 0 X^2 X^2 0 0 X^2 0 X^2 X^2 X^2 0 0 generates a code of length 35 over Z2[X]/(X^3) who´s minimum homogenous weight is 29. Homogenous weight enumerator: w(x)=1x^0+82x^29+195x^30+238x^31+376x^32+432x^33+470x^34+600x^35+477x^36+400x^37+344x^38+168x^39+123x^40+104x^41+42x^42+16x^43+15x^44+6x^45+5x^46+2x^47 The gray image is a linear code over GF(2) with n=140, k=12 and d=58. This code was found by Heurico 1.16 in 15.9 seconds.